3.1.66 \(\int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\) [66]

Optimal. Leaf size=109 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}} \]

[Out]

arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d/a^(1/2)-arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d
*x+c))^(1/2))/d*2^(1/2)/a^(1/2)-cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2858, 3064, 2728, 212, 2852} \begin {gather*} -\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]]/(Sqrt[a]*d) - (Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])
/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[a]*d) - Cot[c + d*x]/(d*Sqrt[a + a*Sin[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\csc ^2(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx &=-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-\frac {\int \frac {\csc (c+d x) (a-a \sin (c+d x))}{\sqrt {a+a \sin (c+d x)}} \, dx}{2 a}\\ &=-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-\frac {\int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx}{2 a}+\int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}-\frac {\cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.87, size = 168, normalized size = 1.54 \begin {gather*} \frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left ((8+8 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )-\cot \left (\frac {1}{4} (c+d x)\right )+2 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sec \left (\frac {1}{2} (c+d x)\right )-\tan \left (\frac {1}{4} (c+d x)\right )\right )}{4 d \sqrt {a (1+\sin (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^2/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*((8 + 8*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x
)/4])] - Cot[(c + d*x)/4] + 2*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 2*Log[1 - Cos[(c + d*x)/2] + Sin[
(c + d*x)/2]] + 2*Sec[(c + d*x)/2] - Tan[(c + d*x)/4]))/(4*d*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

Maple [A]
time = 2.22, size = 133, normalized size = 1.22

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (\sin \left (d x +c \right ) a^{3} \left (\sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )-\arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right )\right )+\sqrt {a -a \sin \left (d x +c \right )}\, a^{\frac {5}{2}}\right )}{a^{\frac {7}{2}} \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(133\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a^(7/2)*(sin(d*x+c)*a^3*(2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*
2^(1/2)/a^(1/2))-arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/2)))+(a-a*sin(d*x+c))^(1/2)*a^(5/2))/sin(d*x+c)/cos(d*x+c
)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(csc(d*x + c)^2/sqrt(a*sin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 412 vs. \(2 (92) = 184\).
time = 0.39, size = 412, normalized size = 3.78 \begin {gather*} \frac {{\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + \frac {2 \, \sqrt {2} {\left (a \cos \left (d x + c\right )^{2} - {\left (a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) - a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{4 \, {\left (a d \cos \left (d x + c\right )^{2} - a d - {\left (a d \cos \left (d x + c\right ) + a d\right )} \sin \left (d x + c\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2
 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a)
- 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c
)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 2*sqrt(2)*(a*cos(d*x + c)^2 - (a*cos(d*x + c) +
 a)*sin(d*x + c) - a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) - 2*sqrt(2)*sqrt(a*sin(d*x + c) +
 a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d
*x + c) - cos(d*x + c) - 2))/sqrt(a) + 4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1))/(a*d*cos(
d*x + c)^2 - a*d - (a*d*cos(d*x + c) + a*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\csc ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**2/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(csc(c + d*x)**2/sqrt(a*(sin(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 217 vs. \(2 (92) = 184\).
time = 0.58, size = 217, normalized size = 1.99 \begin {gather*} \frac {\frac {\sqrt {2} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\log \left ({\left | \frac {1}{2} \, \sqrt {2} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\log \left ({\left | -\frac {1}{2} \, \sqrt {2} + \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, \sqrt {2} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} \sqrt {a} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/2*(sqrt(2)*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - sqrt(2)*l
og(-sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - log(abs(1/2*sqrt(2) +
sin(-1/4*pi + 1/2*d*x + 1/2*c)))/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) + log(abs(-1/2*sqrt(2) + sin(-1
/4*pi + 1/2*d*x + 1/2*c)))/(sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 2*sqrt(2)*sin(-1/4*pi + 1/2*d*x + 1
/2*c)/((2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)*sqrt(a)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\sin \left (c+d\,x\right )}^2\,\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(1/2)),x)

[Out]

int(1/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(1/2)), x)

________________________________________________________________________________________